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The implicitly restarted Arnoldi method (IRAM) [Sor92] is a variant of Arnoldi’s method
for computing a selected subset of eigenvalues and corresponding eigenvectors for large ma-
trices. Implicit restarting is a synthesis of the implicitly shifted QR iteration and the Arnoldi
process that effectively limits the dimension of the Krylov subspace required to obtain good
approximations to desired eigenvalues. The space is repeatedly expanded and contracted
with each new Krylov subspace generated by an updated starting vector obtained by im-
plicit application of a matrix polynomial to the old starting vector. This process is designed
to filter out undesirable components in the starting vector in a way that enables convergence
to the desired invariant subspace. This method has been implemented and is freely available
as ARPACK. The MatlabR© function eigs is based upon ARPACK. Use of this software
is described in Chapter 94.

In this chapter, all matrices, vectors, and scalars are complex and the algorithms are
phrased in terms of complex arithmetic. However, when the matrix (or matrix pair) happens
to be real then the computations may be organized so that only real arithmetic is required.
Multiplication of a vector x by a scalar λ is denoted by xλ so that the eigenvector–eigenvalue
relation is Ax = xλ. This convention provides for direct generalizations to the more general
invariant subspace relations AX = XH, where X is an n × k matrix and H is a k × k
matrix with k < n. More detailed discussion of all facts and definitions may be found in
the overview article [Sor02].

57.1 Krylov Subspace Projection

The classic power method is the simplest way to compute the dominant eigenvalue and
corresponding eigenvector of a large matrix. Krylov subspace projection provides a way to
extract additional eigen-information from the power method iteration by considering all
possible linear combinations of the sequence of vectors produced by the power method.
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Definitions:

The best approximate eigenvectors and corresponding eigenvalues are extracted from the Krylov

subspace

Kk(A,v) := span{v, Av, A2v, . . . , Ak−1v}.

The approximate eigenpairs are constructed through a Galerkin condition. An approximate eigen-

vector x ∈ S is called a Ritz vector with corresponding Ritz value θ if the Galerkin condition

w∗(Ax− xθ) = 0, for all w ∈ Kk(A,v)

is satisfied.

Facts: [Sor92], [Sor02]

1. Every w ∈ Kk is of the form w = φ(A)v1 for some polynomial φ of degree less than
k and Kj−1 ⊂ Kj for j = 2, 3, . . . , k.

2. If a sequence of orthogonal bases Vk = [v1,v2, . . . ,vk] has been constructed with
Kk = range(Vk) and V ∗k Vk = Ik, then a new basis vector vk+1 is obtained by the
projection formulas

hk = V ∗k Avk,

fk =Avk − Vkhk,

vk+1 = fk/‖fk‖2.

The vector hk is constructed to achieve V ∗k fk = 0 so that vk+1 is a vector of unit
length that is orthogonal to the columns of Vk.

3. The columns of Vk+1 = [Vk,vk+1] provide an orthonormal basis for Kk+1(A,v1).
4. The basis vectors are of the form vj = φj−1(A)v1, where φj−1 is a polynomial of

degree j − 1 for each j = 1, 2, . . . , k + 1.
5. This construction fails when fk = 0, but then

AVk = VkHk,

where Hk = V ∗k AVk = [h1,h2, . . . ,hk] (with a slight abuse of notation). This “good
breakdown” happens precisely when Kk is an invariant subspace of A. Hence, σ(Hk) ⊂
σ(A).

57.2 The Arnoldi Factorization

The projection formulas given above result in the fundamental Arnoldi method for con-
structing an orthonormal basis for Kk.

Definitions:

The relations between the matrix A, the basis matrix Vk, and the residual vector fk may be concisely

expressed as

AVk = VkHk + fke
∗
k,

where Vk ∈ Cn×k has orthonormal columns, V ∗k fk = 0, and Hk = V ∗k AVk is a k × k upper

Hessenberg matrix with nonnegative subdiagonal elements.
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The above expression shall be called a k-step Arnoldi factorization of A.

When A is Hermitian, Hk will be real, symmetric, and tridiagonal and then the relation is called

a k-step Lanczos factorization of A.

The columns of Vk are referred to as Arnoldi vectors or Lanczos vectors, respectively.

The Hessenberg matrix Hk is called unreduced if all subdiagonal elements are nonzero.

Facts: [Sor92], [Sor02]

1. The explicit steps needed to form a k-step Arnoldi factorization are shown in Algo-
rithm 1.

Algorithm 1: k-step Arnoldi factorization. A square matrix A, a nonzero
vector v, and a positive integer k ≤ n are input.

Output is an n × k ortho-normal matrix Vk, an upper Hessenberg matrix Hk

and a vector fk such that AVk = VkHk + fke
T
k .

v1 = v/‖v‖2;
w = Av1; α1 = v∗1w;
f1 ← w − v1α1;
V1 ← [v1]; H1 ← [α1];
for j = 1, 2, 3, . . . k − 1,

βj = ‖fj‖2; vj+1 ← fj/βj ;
Vj+1 ← [Vj ,vj+1];

Ĥj ←
[
Hj

βje
∗
j

]
;

w← Avj+1;
h← V ∗j+1w;
fj+1 ← w − Vj+1h;

Hj+1 ← [Ĥj ,h];

end

2. Ritz pairs satisfying the Galerkin condition (see Section 57.1) are derived from the
eigenpairs of the small projected matrix Hk. If Hky = yθ with ‖y‖2 = 1, then the
vector x = Vky is a vector of unit norm that satisfies

‖Ax− xθ‖2 = ‖(AVk − VkHk)y‖2 = |βke∗ky|,

where βk = ‖fk‖2.
3. If (x, θ) is a Ritz pair constructed as shown in Fact 2, then

θ = y∗Hky = (Vky)∗A(Vky) = x∗Ax

is always a Rayleigh quotient (assuming ‖y‖2 = 1).
4. The Rayleigh quotient residual r(x) := Ax − xθ satisfies ‖r(x)‖2 = |βke∗ky|. When
A is Hermitian, this relation provides computable rigorous bounds on the accuracy
of the approximate eigenvalues [Par80]. When A is non-Hermitian, one needs ad-
ditional sensitivity information. Nonnormality effects may corrupt the accuracy. In
exact arithmetic, these Ritz pairs are eigenpairs of A whenever fk = 0. However, even
with a very small residual these may be far from actual eigenvalues when A is highly
nonnormal.
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w = Av
f = w - Vh

Range(V)

VcVh + Vc

- Vc

FIGURE 57.1 DGKS Correction.

5. The orthogonalization process is based upon the classical Gram–Schmidt (CGS)
scheme. This process is notoriously unstable and will fail miserably in this appli-
cation without modification. The iterative refinement technique proposed by Daniel,
Gragg, Kaufman, and Stewart (DGKS) [DGK76] provides an excellent way to con-
struct a vector fj+1 that is numerically orthogonal to Vj+1. It amounts to computing
a correction

c = V ∗j+1fj+1; fj+1 ← fj+1 − Vj+1c; h← h + c;

just after computing fj+1 if necessary, i.e., when fj+1 is not sufficiently orthogonal to
the columns of Vj+1. This formulation is crucial to both accuracy and performance. It
provides numerically orthogonal basis vectors and it may be implemented using the
Level 2 BLAS operation GEMV [DDH88]. This provides a significant performance
advantage on virtually every platform from workstation to supercomputer.

6. The modified Gram–Schmidt (MGS) process will generally fail to produce orthogonal
vectors and cannot be implemented with Level 2 BLAS in this setting. ARPACK
relies on a restarting scheme wherein the goal is to reach a state of dependence in
order to obtain fk = 0. MGS is completely inappropriate for this situation, but the
CGS with DGKS correction performs beautifully.

7. Failure to maintain orthogonality leads to numerical difficulties in the Lanczos/Arnoldi
process. Loss of orthogonality typically results in the presence of spurious copies of
the approximate eigenvalue.

Examples:

1. Figure 57.1 illustrates how the DGKS mechanism works. When the vector w = Av is nearly

in the range(V ), then the projection V h is possibly inaccurate, but vector = w−Vh is not

close to range(V ) and can be safely orthogonalized to compute the correction c accurately.

The corrected vector f ← f − V c will be numerically orthogonal to the columns of V in

almost all cases. Additional corrections might be necessary in very unusual cases.

57.3 Restarting the Arnoldi Process

The number of Arnoldi steps required to calculate eigenvalues of interest to a specified
accuracy cannot be pre-determined. Usually, eigen-information of interest does not appear
until k gets very large. In Figure 57.2 the distribution in the complex plane of the Ritz
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values (shown in grey dots) is compared with the spectrum (shown as +s). The original
matrix is a normally distributed random matrix of order 200 and the Ritz values are from
a (k = 50)-step Arnoldi factorization. Eigenvalues at the extremes of the spectrum of A are
clearly better approximated than the interior eigenvalues.
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FIGURE 57.2 Typical distribution of Ritz values.

For large problems, it is intractable to compute and store a numerically orthogonal basis
set Vk for large k. Storage requirements are O(n ·k) and arithmetic costs are O(n ·k2) flops
to compute the basis vectors plus O(k3) flops to compute the eigensystem of Hk. Thus,
restarting schemes have been developed that iteratively replace the starting vector v1 with
an “improved” starting vector v+

1 and then compute a new Arnoldi factorization of fixed
length k to limit the costs. Beyond this, there is an interest in forcing fk = 0 and, thus,
producing an invariant subspace. However, this is useful only if the spectrum σ(Hk) has the
desired properties.

The structure of fk suggests the restarting strategy. The goal will be to iteratively force
v1 to be a linear combination of eigenvectors of interest.

Facts: [Sor92], [Sor02]

1. If v =
∑k
j=1 qjγj where Aqj = qjλj and

AV = VH + feTk

is a k-step Arnoldi factorization with unreduced H, then f = 0 and σ(H) = {λ1,
λ2, . . . , λk}.

2. Since v1 determines the subspace Kk, this vector must be constructed to select the
eigenvalues of interest. The starting vector must be forced to become a linear combi-
nation of eigenvectors that span the desired invariant subspace. There is a necessary
and sufficient condition for f to vanish that involves Schur vectors and does not require
diagonalizability.

57.4 Polynomial Restarting

Polynomial restarting strategies replace v1 by
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v1 ← ψ(A)v1,

where ψ is a polynomial constructed to damp unwanted components from the starting
vector. If v1 =

∑n
j=1 qjγj where Aqj = qjλj , then

v+
1 = ψ(A)v1 =

n∑
j=1

qjγjψ(λj),

where the polynomial ψ has also been normalized to give ‖v1‖2 = 1. Motivated by the
structure of fk, the idea is to force the starting vector to be closer and closer to an invariant
subspace by constructing ψ so that |ψ(λ)| is as small as possible on a region containing the
unwanted eigenvalues.

An iteration is defined by repeatedly restarting until the updated Arnoldi factorization
eventually contains the desired eigenspace. An explicit scheme for restarting was proposed
by Saad in [Saa92]. One of the more successful choices is to use Chebyshev polynomials in
order to damp unwanted eigenvector components.

Definitions:

The polynomial ψ is sometimes called a filter polynomial, which may also be specified by its

roots.

The roots of the filter polynomial may also be referred to as shifts. This terminology refers to

their usage in an implicitly shifted QR-iteration.

One straightforward choice of shifts is to find the eigenvalues θj of the projected matrix H and

sort these into two sets according to a given criterion: the wanted set W = {θj : j = 1, 2, . . . , k}
and the unwanted set U = {θj : j = k + 1, k + 2, . . . , k + p}. Then one specifies the polynomial ψ

as the polynomial with these unwanted Ritz values as it roots. This choice of roots, called exact

shifts, was suggested in [Sor92].

Facts: [Sor92], [Sor02]

1. Morgan [Mor96] found a remarkable property of this strategy. If exact shifts are

used to define ψ(τ) =
∏k+p
j=k+1(τ − θj) and if q̂j denotes a Ritz vector of unit length

corresponding to θj , then the Krylov space generated by v+
1 = ψ(A)v1 satisfies

Km(A,v+
1 ) = Span{q̂1, q̂2, . . . , q̂k, Aq̂j , A

2q̂j , . . . , A
pq̂j},

for any j = 1, 2, . . . , k. Thus, polynomial restarting with exact shifts will generate
a new subspace that contains all of the possible choices of updated staring vector
consisting of linear combinations of the wanted Ritz vectors.

2. Exact shifts tend to perform remarkably well in practice and have been adopted
as the shift selection of choice in ARPACK when no other information is available.
However, there are many other possibilities such as the use of Leja points for certain
containment regions or intervals [BCR96].

57.5 Implicit Restarting

There are a number of schemes used to implement polynomial restarting. We shall focus on
an implicit restarting scheme.
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Definitions:

A straightforward way to implement polynomial restarting is to explicitly construct the starting

vector v+
1 = ψ(A)v1 by applying ψ(A) through a sequence of matrix-vector products. This is called

explicit restarting.

A more efficient and numerically stable alternative is implicit restarting. This technique ap-

plies a sequence of implicitly shifted QR steps to an m-step Arnoldi or Lanczos factorization to

obtain a truncated form of the implicitly shifted QR-iteration.

On convergence, the IRAM iteration (see Algorithm 2) gives an orthonormal matrix Vk and an

upper Hessenberg matrix Hk such that AVk ≈ VkHk.

If HkQk = QkRk is a Shur decompositon of Hk, then we call V̂k ≡ VkQk a Schur basis for the

Krylov subspace Kk(A,v1).

Note that if AVk = VkHk exactly, then V̂k would form the leading k columns of a unitary matrix

V̂ and Rk would form the leading k × k block of an upper triangular matrix R, where AV̂ = V̂ R

is a complete Schur decomposition. We refer to this as a partial Schur decomposition of A.

Algorithm 2: IRAM iteration
Input is an n × k ortho-normal matrix Vk, an upper Hessenberg matrix Hk, and
a vector fk such that AVk = VkHk + fke

T
k .

Output is an n× k ortho-normal matrix Vk, an upper triangular matrix Hk such
that AVk = VkHk.

repeat until convergence,
Beginning with the k-step factorization,
apply p additional steps of the Arnoldi process
to compute an m = k + p step Arnoldi factorization

AVm = VmHm + fme∗m .
Compute σ(Hm) and select p shifts µ1, µ2, ...µp;
Q = Im;
for j = 1, 2, ..., p,

Factor [Qj , Rj ] = qr(Hm − µjI);
Hm ← Q∗jHmQj ;
Q← QQj ;

end
β̂k = Hm(k + 1, k); σk = Q(m, k);

fk ← vk+1β̂k + fmσk;
Vk ← VmQ(:, 1 : k); Hk ← Hm(1 : k, 1 : k);

end

Facts: [Sor92], [Sor02]

1. Implicit restarting avoids numerical difficulties and storage problems normally asso-
ciated with Arnoldi and Lanczos processes. The algorithm is capable of computing
a few (k) eigenvalues with user specified features such as largest real part or largest
magnitude using 2nk + O(k2) storage. The computed Schur basis vectors for the
desired k-dimensional eigenspace are numerically orthogonal to working precision.

2. Desired eigen-information from a high-dimensional Krylov space is continually com-
pressed into a fixed size k-dimensional subspace through an implicitly shifted QR
mechanism. An Arnoldi factorization of length m = k + p,

AVm = VmHm + fme∗m,

is compressed to a factorization of length k that retains the eigen-information of
interest. Then the factorization is expanded once more tom-steps and the compression
process is repeated.
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3. QR steps are used to apply p linear polynomial factors A − µjI implicitly to the
starting vector v1. The first stage of this shift process results in

AV+
m = V +

mH
+
m + fme∗mQ,

where V +
m = VmQ, H+

m = Q∗HmQ, and Q = Q1Q2 · · ·Qp. Each Qj is the orthogonal
matrix associated with implicit application of the shift µj = θk+j . Since each of the
matrices Qj is Hessenberg, it turns out that the first k− 1 entries of the vector e∗mQ

are zero (i.e., e∗mQ = [σe
T

k , q̂
∗]). Hence, the leading k columns remain in an Arnoldi

relation and provide an updated k-step Arnoldi factorization

AV +
k = V +

k H
+
k + f+

k e∗k,

with an updated residual of the form f+
k = V +

m ek+1β̂k + fmσ. Using this as a starting
point, it is possible to apply p additional steps of the Arnoldi process to return to the
original m-step form.

4. Virtually any explicit polynomial restarting scheme can be applied with implicit
restarting, but considerable success has been obtained with exact shifts. Exact shifts
result in H+

k having the k wanted Ritz values as its spectrum. As convergence takes
place, the subdiagonals of Hk tend to zero and the most desired eigenvalue approx-
imations appear as eigenvalues of the leading k × k block of R as a partial Schur
decomposition of A. The basis vectors Vk tend to numerically orthogonal Schur vec-
tors.

5. The basic IRAM iteration is shown in Algorithm 2.

Examples:

1. The expansion and contraction process of the IRAM iteration is visualized in Figure 57.3.

FIGURE 57.3 Visualization of IRAM.

57.6 Convergence of IRAM

IRAM converges linearly. An intuitive explanation follows. If v1 is expressed as a linear
combination of eigenvectors {qj} of A, then

v1 =

n∑
j=1

qjγj ⇒ ψ(A)v1 =

n∑
j=1

qjψ(λj)γj .
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Applying the same polynomial (i.e., using the same shifts) repeatedly for ` iterations will
result in the j-th original expansion coefficient being attenuated by a factor(

ψ(λj)

ψ(λ1)

)`
,

where the eigenvalues have been ordered according to decreasing values of |ψ(λj)|. The
leading k eigenvalues become dominant in this expansion and the remaining eigenvalues
become less and less significant as the iteration proceeds. Hence, the starting vector v1

is forced into an invariant subspace as desired. The adaptive choice of ψ provided with
the exact shift mechanism further enhances the isolation of the wanted components in this
expansion. Hence, the wanted eigenvalues are approximated ever better as the iteration
proceeds. Making this heuristic argument precise has turned out to be quite difficult. Some
fairly sophisticated analysis is required to understand convergence of these methods.

57.7 Convergence in Gap: Distance to a Subspace

To fully discuss convergence we need some notion of nearness of subspaces. When nonnor-
mality is present or when eigenvalues are clustered, the distance between the computed
subspace and the desired subspace is a better measure of success than distance between
eigenvalues. The subspaces carry uniquely defined Ritz values with them, but these can be
very sensitive to perturbations in the nonnormal setting.

Definitions:

A notion of distance that is useful in our setting is the containment gap between the subspaces

W and V :

δ(W,V) := max min
w∈W v∈V

‖w − v‖2
‖w‖2

.

Note: δ(W,V) is the sine of the largest canonical angle between W and the closest subspace of V
with the same dimension as W.

In keeping with the terminology developed in [BER04] and [BES05], Xg shall be the invariant

subspace of A associated with the so called “good” eigenvalues (the desired eigenvalues) and Xb is

the complementary subspace. Pg and Pb are the spectral projectors with respect to these spaces.

It is desirable to have convergence in gap for the Krylov method, meaning

δ(Km(A,v
(`)
1 ),Xg)→ 0.

Fundamental quantities required to study convergence.

1. Minimal polynomial for XXg:

ag := minimal polynomial of A with respect to Pgv1,

which is the monic polynomial of least degree s.t. ag(A)Pgv1 = 0.

2. Nonnormality constant κ(Ω): The smallest positive number s.t.

‖f(A) ΠU‖2 ≤ κ(Ω) max
z∈Ω
|f(z)|

uniformly for all functions f analytic on Ω. This constant and its historical origins are

discussed in detail in [BER04].

3. ε-pseudospectrum of A:

Λε(A) := {z ∈ C : ‖(zI −A)−1‖2 ≥ ε−1}.
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Facts: [BER04], [BES05]

1. Two fundamental convergence questions:

(a) What is the gap δ(Ug,Kk(A,v1)) as k increases?

(b) How does δ(Ug,Km(A, v̂1)) depend on v̂1 = Φ(A)v1, and how can we optimize
the asymptotic behavior?

Key ingredients to convergence behavior are the nonnormality of A and the distri-
bution of v1 w. r. t. Ug. The goal of restarting is to attain the unrestarted iteration
performance, but within restricted subspace dimensions.

2. Convergence with no restarts: In [BES05], it is shown that

δ(Ug,K`(A,v1)) ≤ CoCb min
p∈P`−2m

max
z∈Ωb

∣∣1− ag(z)p(z)∣∣,
where the compact set Ωg ⊆ C \ Ωb contains all the good eigenvalues.

Co := max
ψ∈Pm−1

‖ψ(A)Pbv1‖2
‖ψ(A)Pgv1‖2

, Cb := κ(Ωb).

3. Rate of convergence estimates are obtained from complex approximation theory. Con-
struct conformal map G taking the exterior of Ωb to the exterior of the unit disk with

G(∞) =∞ and G′(∞) > 0. Define ρ :=
(

minj=1,...,L |G(λj)|
)−1

. Then (Gaier, Walsh)

lim sup
k→∞

min
p∈Pk

max
z∈Ωb

∣∣∣ 1

ag(z)
− p(z)

∣∣∣1/k = ρ.

The image of {|z| = ρ−1} is a curve C := G−1({|z| = ρ−1}) around Ωb. This critical
curve passes through a good eigenvalue “closest to” Ωb. The curve contains at least
one good eigenvalue, with all bad and no good eigenvalues in its interior.

4. Convergence with the exact shift strategy has not yet been fully analyzed. How-
ever, convergence rates have been established for restarts with asymptotically optimal
points. These are the Fejér, Fekete, or Leja points for Ωb. In [BES05], computational
experiments are shown that indicate that exact shifts behave very much like optimal
points for certain regions bounded by pseudo-spectral level curves or lemniscates.

5. Let ΨM interpolate 1/ag(z) at the M restart shifts:

δ(Ug,K`(A, v̂1)) ≤ CoCg max
z∈Ωb

|1−ΨM (z)ag(z)| ≤ Co Cg Cr rM

for any r > ρ (see [Gai87], [FR89]). Here, v̂1 = Φ(A)v1, where Φ is the aggregate
restart polynomial (its roots are all the implicit restart shifts that have been applied).
The subspace dimension is `= 2m, the restart degree is m, and the aggregate degree
is M = νm.

57.8 The Generalized Eigenproblem

In many applications, the generalized eigenproblem Ax = Mxλ arises naturally. A typical
setting is a finite element discretization of a continuous problem where the matrix M arises
from inner products of basis functions. In this case, M is symmetric and positive (semi) def-
inite, and for some algorithms this property is a necessary condition. Generally, algorithms
are based upon transforming the generalized problem to a standard problem.
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57.9 Krylov Methods with Spectral Transformations

Definitions:

A very successful scheme for converting the generalized problem to a standard problem that is

amenable to a Krylov or a subspace iteration method is to use the spectral transformation

suggested by Ericsson and Ruhe [ER80],

(A− σM)−1Mx = xν.

Facts: [Sor92], [Sor02]

1. An eigenvector x of the spectral transformation is also an eigenvector of the original
problem Ax = Mxλ, with the corresponding eigenvalue given by λ = σ + 1

ν .
2. There is generally rapid convergence to eigenvalues near the shift σ because they are

transformed to extremal well-separated eigenvalues. Perhaps an even more influential
aspect of this transformation is that eigenvalues far from σ are damped (mapped near
zero).

3. One strategy is to choose σ to be a point in the complex plane that is near eigen-
values of interest and then compute the eigenvalues ν of largest magnitude of the
spectral transformation matrix. It is not necessary to have σ extremely close to an
eigenvalue. This transformation, together with the implicit restarting technique, is
usually adequate for computing a significant number of eigenvalues near σ.

4. Even when M = I, one generally must use the shift-invert spectral transformation
to find interior eigenvalues. The extreme eigenvalues of the transformed operator Aσ
are generally large and well separated from the rest of the spectrum. The eigenvalues
ν of largest magnitude will transform back to eigenvalues λ of the original A that are
in a disk about the point σ. This is illustrated in Figure 57.4, where the + symbols
are the eigenvalues of A and the circled ones are the computed eigenvalues in the disk
(dashed circle) centered at the point σ.
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FIGURE 57.4 Eigenvalues from shift-invert.

5. With shift-invert, the Arnoldi process is applied to the matrix Aσ := (A−σM)−1M .
Whenever a matrix-vector product w ← Aσv is required, the following steps are
performed:

(a) z = Mv,
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(b) Solve (A− σM)w = z for w.

The matrix A−σM is factored initially with a sparse direct LU-decomposition or in
a symmetric indefinite factorization and this single factorization is used repeatedly
to apply the matrix operator Aσ as required.

6. The scheme is modified to preserve symmetry when A and M are both symmetric
and M is positive (semi)definite. One can utilize a weighted M (semi)inner product in
the Lanczos/Arnoldi process [ER80], [GLS94], [MS97]. This amounts to replacing the
computation of h ← V ∗j+1w and βj = ‖fj‖2 with h ← V ∗j+1Mw and βj =

√
f∗jM fj ,

respectively, in the Arnoldi process described in Algorithm 1.
7. The matrix operator Aσ is self-adjoint with respect to this (semi)inner product, i.e.,
〈Aσx,y〉 = 〈x, Aσy〉 for all vectors x,y, where 〈w,v〉 :=

√
w∗Mv. This implies that

the projected Hessenberg matrix H is actually symmetric and tridiagonal and the
standard three-term Lanczos recurrence is recovered with this inner product.

8. There is a subtle aspect to this approach when M is singular. The most pathological
case, when null(A)∩null(M) 6= {0}, is not treated here. However, when M is singular
there may be infinite eigenvalues of the pair (A,M) and the presence of these can
introduce large perturbations to the computed Ritz values and vectors. To avoid these
difficulties, a purging operation has been suggested by Ericsson and Ruhe [ER80]. If
x = V y with Hy = yθ, then

Aσx = VHy + feTk y = xθ + feTk y.

Replacing the x with the improved eigenvector approximation x← (x + 1
θ fe

T
k y) and

renormalizing has the effect of purging undesirable components without requiring any
additional matrix vector products with Aσ.

9. The residual error of the purged vector x with respect to the original problem is

‖Ax−Mxλ‖2 = ‖M f‖2
|eTk y|
|θ|2

,

where λ = σ+ 1/θ. Since |θ| is usually quite large under the spectral transformation,
this new residual is generally considerably smaller than the original.
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